Efficient prediction of alternative splice forms using protein domain homology

نویسندگان

  • Michael Hiller
  • Rolf Backofen
  • Stephan Heymann
  • Anke Busch
  • Timo Mika Gläßer
  • Johann-Christoph Freytag
چکیده

Alternative splicing can yield manifold different mature mRNAs from one precursor. New findings indicate that alternative splicing occurs much more often than previously assumed. A major goal of functional genomics lies in elucidating and characterizing the entire spectrum of alternative splice forms. Existing approaches such as EST-alignments focus only on the mRNA sequence to detect alternative splice forms. They do not consider function and characteristics of the resulting proteins. One important example of such functional characterization is homology to a known protein domain family. A powerful description of protein domains are profile Hidden Markov models (HMM) as stored in the Pfam database. In this paper we address the problem of identifying the splice form with the highest similarity to a protein domain family. Therefore, we take into consideration all possible splice forms. As demonstrated here for a number of genes, this homology based approach can be used successfully for predicting partial gene structures. Furthermore, we present some novel splice form predictions with high-scoring protein domain homology and point out that the detection of splice form specific protein domains helps to answer questions concerning hereditary diseases. Simple approaches based on a BLASTP search cannot be applied here, since the number of possible splice forms increases exponentially with the number of exons. To this end, we have developed an efficient polynomial-time algorithm, called ASFPred (Alternative Splice Form Prediction). This algorithm needs only a set of exons as input.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternatively spliced forms in the carboxy-terminal domain of the p53 protein regulate its ability to promote annealing of complementary single strands of nucleic acids.

The carboxy-terminal domain of the p53 protein comprising amino acid residues 311 to 393 is able to promote the reassociation of single-stranded RNA or DNA into duplex hybrids. This domain is as efficient as the intact p53 protein in both the rate and the extent of the double-stranded product produced in this reaction. Both wild-type and mutant p53 proteins from cancerous cells carry out this r...

متن کامل

Distinct roles of two alternative splice variants of matrilin-2 in protein oligomerization and proteolysis.

Matrilin-2 (matn2) contains a unique domain, between the second von Willebrand factor A (vWFA) domain and the C-terminal coiled-coil domain, with no sequence homology with other family members. Complementary DNA (cDNA) sequence analysis of matn2 expression in both mice and humans revealed an alternative splice site in the region of the unique doma...

متن کامل

Genomic structure, chromosomal localization, and conserved alternative splice forms of thrombopoietin.

Thrombopoietin (TPO), the ligand for c-mpl, is a novel cytokine comprising an amino terminal domain with homology to erythropoietin and a glycosylated carboxyl terminal domain that does not bear overall homology to other known proteins. We report the cloning of cDNAs encoding the porcine and murine TPO and the characterization of the human TPO gene. The cDNA for an additional splice form (TPO-2...

متن کامل

Functional implications of structural predictions for alternative splice proteins expressed in Her2/neu-induced breast cancers.

Alternative splicing allows a single gene to generate multiple mRNA transcripts, which can be translated into functionally diverse proteins. However, experimentally determined structures of protein splice isoforms are rare, and homology modeling methods are poor at predicting atomic-level structural differences because of high sequence identity. Here we exploit the state-of-the-art structure pr...

متن کامل

Cloning and characterization of the human homologue of a dystrophin related phosphoprotein found at the Torpedo electric organ post-synaptic membrane.

Dystrophin is the protein product which is absent in Duchenne muscular dystrophy (DMD). In mammalian skeletal muscle, dystrophin is found in association with several integral and peripheral membrane proteins, forming a complex known as the dystrophin glycoprotein complex (DGC). In an expressed sequence tag (EST) database search to identify new dystrophin related genes, we isolated EST00891 whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • In silico biology

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2004